20 research outputs found

    Analysis of Ecological Environmental Quality Change in the Yellow River Basin Using the Remote-Sensing-Based Ecological Index

    No full text
    Establishing a method for characterizing spatiotemporal changes in the quality of the ecological environment in a timely and accurate manner is of great significance for the protection and sustainable development of the ecological environment in the Yellow River Basin (YRB). In this study, the Google Earth Engine (GEE) platform was used as a basis for constructing the remote-sensing-based ecological index (RSEI), and the RSEI was used to evaluate the quality of the ecological environment in the YRB. The results indicated that the mean of the RSEI values showed two stages of rapid improvement and slow improvement during 1990–2020. From 1990 to 2000, the average growth trend was 0.005/a with a growth rate of 21.15%, with the main contributions of bad to poor (101,800 km2), poor to medium (56,900 km2), and medium to good (70,800 km2) ecological environmental quality levels. From 2000 to 2020, the average growth trend was 0.002/a with a growth rate of 2.13%, with main contributions of poor to bad (65,100 km2) and good to medium (35,200 km2) ecological environmental quality levels. From 1990 to 2020, there was a 76.38% improvement in the ecological environmental quality of the entire YRB, in which significant improvement accounted for 26.14%. The reductions in the ecological environmental quality accounted for 23.62%, of which significant reductions accounted for just 1.46%. The improvement in the ecological environmental quality of the YRB showed a trend of increasing sustainability, which is expected to continue. The distribution of the ecological environmental quality in the YRB showed obvious regional aggregation, whereby cold spots were concentrated in the northern and central regions of the YRB, which are the sandy and hilly ravine areas of the Loess Plateau. However, the areas corresponding to hot spot clusters decreased with time, and their significance also decreased. Thus, our study demonstrates that the GEE platform can be used to determine the spatiotemporal changes in the ecological environmental quality of the YRB in a timely and accurate manner

    Influence of Vegetation Coverage on Hydraulic Characteristics of Overland Flow

    No full text
    Soil erosion is a major problem in the Loess Plateau (China); however, it can be alleviated through vegetation restoration. In this study, the overland flow on a slope during soil erosion was experimentally simulated using artificial grass as vegetation cover. Nine degrees of vegetation coverage and seven flow rates were tested in combinations along a 12° slope gradient. As the coverage degree increased, the water depth of the overland flow increased, but the flow velocity decreased. The resistance coefficient increased with increasing degree of coverage, especially after a certain point. The resistance coefficient and the Reynolds number had an inverse relationship. When the Reynolds number was relatively small, the resistance coefficient decreased faster; however, when it exceeded 600, the resistance coefficient decreased at a slower rate. A critical degree of vegetation cover was observed in the relationship between the resistance coefficient and submergence degree. When the degree of coverage was greater than 66.42%, the resistance coefficient first decreased and then increased with a higher submergence degree. Finally, the formula for the resistance coefficient under vegetation coverage was derived. This formula has a relatively high accuracy and can serve as a reference for predicting soil erosion

    Notch1 Is Involved in Physiologic Cardiac Hypertrophy of Mice via the p38 Signaling Pathway after Voluntary Running

    No full text
    Appropriate exercise such as voluntary wheel-running can induce physiological cardiac hypertrophy. Notch1 plays an important role in cardiac hypertrophy; however, the experimental results are inconsistent. In this experiment, we aimed to explore the role of Notch1 in physiological cardiac hypertrophy. Twenty-nine adult male mice were randomly divided into a Notch1 heterozygous deficient control (Notch1+/− CON) group, a Notch1 heterozygous deficient running (Notch1+/− RUN) group, a wild type control (WT CON) group, and a wild type running (WT RUN) group. Mice in the Notch1+/− RUN and WT RUN groups had access to voluntary wheel-running for two weeks. Next, the cardiac function of all of the mice was examined by echocardiography. The H&E staining, Masson trichrome staining, and a Western blot assay were carried out to analyze cardiac hypertrophy, cardiac fibrosis, and the expression of proteins relating to cardiac hypertrophy. After two-weeks of running, the Notch1 receptor expression was decreased in the hearts of the WT RUN group. The degree of cardiac hypertrophy in the Notch1+/− RUN mice was lower than that of their littermate control. Compared to the Notch1+/− CON group, Notch1 heterozygous deficiency could lead to a decrease in Beclin-1 expression and the ratio of LC3II/LC3I in the Notch1+/− RUN group. The results suggest that Notch1 heterozygous deficiency could partly dampen the induction of autophagy. Moreover, Notch1 deficiency may lead to the inactivation of p38 and the reduction of β-catenin expression in the Notch1+/− RUN group. In conclusion, Notch1 plays a critical role in physiologic cardiac hypertrophy through the p38 signaling pathway. Our results will help to understand the underlying mechanism of Notch1 on physiological cardiac hypertrophy

    Analysis of Ecological Environmental Quality Change in the Yellow River Basin Using the Remote-Sensing-Based Ecological Index

    No full text
    Establishing a method for characterizing spatiotemporal changes in the quality of the ecological environment in a timely and accurate manner is of great significance for the protection and sustainable development of the ecological environment in the Yellow River Basin (YRB). In this study, the Google Earth Engine (GEE) platform was used as a basis for constructing the remote-sensing-based ecological index (RSEI), and the RSEI was used to evaluate the quality of the ecological environment in the YRB. The results indicated that the mean of the RSEI values showed two stages of rapid improvement and slow improvement during 1990–2020. From 1990 to 2000, the average growth trend was 0.005/a with a growth rate of 21.15%, with the main contributions of bad to poor (101,800 km2), poor to medium (56,900 km2), and medium to good (70,800 km2) ecological environmental quality levels. From 2000 to 2020, the average growth trend was 0.002/a with a growth rate of 2.13%, with main contributions of poor to bad (65,100 km2) and good to medium (35,200 km2) ecological environmental quality levels. From 1990 to 2020, there was a 76.38% improvement in the ecological environmental quality of the entire YRB, in which significant improvement accounted for 26.14%. The reductions in the ecological environmental quality accounted for 23.62%, of which significant reductions accounted for just 1.46%. The improvement in the ecological environmental quality of the YRB showed a trend of increasing sustainability, which is expected to continue. The distribution of the ecological environmental quality in the YRB showed obvious regional aggregation, whereby cold spots were concentrated in the northern and central regions of the YRB, which are the sandy and hilly ravine areas of the Loess Plateau. However, the areas corresponding to hot spot clusters decreased with time, and their significance also decreased. Thus, our study demonstrates that the GEE platform can be used to determine the spatiotemporal changes in the ecological environmental quality of the YRB in a timely and accurate manner

    Variations of Groundwater Dynamics in Alluvial Aquifers with Reclaimed Water Restoring the Overlying River, Beijing, China

    No full text
    Some of the rivers in northern China are dried, and reclaimed water (RW) is used to restore these degraded river ecosystems, during which the RW could recharge the aquifer by river bank infiltration. From 2007 to 2018, 2.78 × 108 m3 of RW has been replenished to the dried Chaobai River (Shunyi reach), Beijing, China, which is located on the edge of one depression cone in groundwater caused by groundwater over-pumping. The groundwater hydrodynamic variations and the flow path of the RW were identified by eight-year hydrological, hydrochemical, and stable isotopic data, together with multivariate statistical analysis. The RW infiltration drastically impacts the groundwater dynamics with a spatiotemporal variation. The 30-m depth groundwater levels at Perennial intake reach increased quickly around 3 m after 2007, which indicated that they were dominated by RW infiltration. Other 30-m depth groundwater levels were controlled by precipitation recharge from 2007 to 2011, showing significant seasonal variations. In 2012, with more RW transferred to the river, the hydrodynamic impact of the RW on 30-m depth aquifer expanded downstream. However, the 50-m and 80-m depth groundwater levels showed decreasing trend with seasonal variations, due to groundwater pumping. The 30-m depth aquifer was mainly recharged by RW, being evidenced by the enriched δ2H and δ18O. The depleted δ2H and δ18O of the 50-m and 80-m depth groundwater indicated that they were dominated by regional groundwater with meteoric origin. The heterogenous properties of the multi-layer alluvial aquifer offer the preferential flow path for RW transport in the aquifers. The proportion of the RW in the aquifers decreases with depth that was calculated by the chloride conservative mixing model. The increased lateral hydraulic gradient (0.43%) contributes to the RW transport in the 30-m depth aquifer. RW usage changed 30-m depth groundwater type from Ca·Mg-HCO3 to Na·Ca·Mg-HCO3·Cl. RW preferentially recharged the 50-m and 80-m depth aquifers by vertical leakage

    Changes in Fruit Quality Phytochemicals of Late-Mature Peach ‘Yonglian No.1’ during Storage

    No full text
    In this study, the changes in quality parameters and sensory-influencing parameters from the peel, red flesh, and white flesh of ‘Yonglian No.1’ peach fruits were analyzed during cold storage. The results indicated that the contents of total soluble solids (TSS), soluble sugar, organic acid, vitamin C, total anthocyanin, phenol, and flavonoids, as well as the good fruit rate varied depending on the storage stages and storage treatments. The peach fruits in MAP stored for 50 days had favorable exterior qualities, a good fruit rate of 100%, and a higher content of total soluble solids (TSS) at 12.6%. MAP was significantly effective at maintaining fruit firmness, the content of TSS, soluble sugar, organic acid, vitamin C, total anthocyanin, phenol, and flavonoids. Among the derivatives of anthocyanin, both cyanidin and pelargonidin were found in the peel, with a content of 33.45 mg/kg FW and 1.82 mg/kg FW, respectively. However, cyanidin was detected in the flesh with a content of 40.42 mg/kg FW. In the present work, the differences regarding phytochemical profiles and physical properties were mainly correlated with the storage stages and storage treatments of peach fruit. ‘Yonglian No.1’ had higher levels of health-promoting compounds during storage and maintained favorable quality
    corecore